In this study, an electronic nose is used to record breathing data from healthy patients and pneumonia patients. The electronic nose records resistance data using a micro-array of 11 sensors. The recorded data is fed to Artificial Neural Network (ANN) which is used to train a model for detection of infections. The ANN has performed accurate classification which can be further developed to an online efficient pneumonia detection system. Initially, five patients’ data are used to build up the ANN model. Then, another two patients’ data are used to test the accuracy of the model. The results show that the model predicts the same outcome that is diagnosed by Taipei Medical University Hospital where samples have to be cultured to identify whether patients have pneumonia or not. In this preliminary study, ANN has achieved good results which can be further developed to an online efficient pneumonia detection system in the near future.Taiwan Carbon Nanotube Technology Corporatio