Mechanisms and control of macrosegregation in DC casting

Abstract

Macrosegregation is a severe, unrecoverable defect often occurring in large-scale castings. This paper offers a critical review of mechanisms involved in the formation of macrosegregation during DC casting of aluminum alloys. These mechanisms include thermo-solutal and forced convection, shrinkage-driven flow and transport of solid crystals. It is demonstrated that the impact of melt flow on macrosegregation depends on the flow direction and pattern, and on the extent of the slurry zone in the sump. The shrinkage-induced flow contributes to the negative centerline segregation but this contribution depends on the shape of the macroscopic solidification front and on the permeability of the mushy zone. Accumulation of floating crystals will result in negative segregation but the occurrence of these grains and their composition depends on grain refinement and melt How pattern. It is shown that macrosegregation can be controlled by practical means such as process parameters, structure modification and melt flow management

    Similar works