We study the physics of droplet breakup in a statistically stationary
homogeneous and isotropic turbulent flow by means of high resolution numerical
investigations based on the multicomponent lattice Boltzmann method. We
verified the validity of the criterion proposed by Hinze (1955) for droplet
breakup and we measured the full probability distribution function (pdf) of
droplets radii at different Reynolds numbers and for different volume fraction.
By means of a Lagrangian tracking we could follow individual droplets along
their trajectories, define a local Weber number based on the velocity gradients
and study its cross-correlation with droplet deformation.Comment: 10 pages, 6 figure