thesis

Optical fiber transmission systems for in-door next generation broadband access network.

Abstract

This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London.This thesis investigates the generation and radio-over-fibre (RoF) transport of unlicensed 60 GHz millimetre-wave (mm-wave) frequency band. The investigated benefits of transmission schemes applicable for the mm-wave generation include optical carrier suppression (OCS), optical frequency multiplication (OFM) and remote heterodyne detection (RHD). For the in-door cabling of the mm-wave transmission, a low-cost polymer optical fibre (POF) along with bend-insensitive single mode fibre (BI-SMF) has been investigated for short-range networks. Transporting mm-wave generated signals over POF and BI-SMF cables based on OCS scheme showed results with the highest spectral efficiency and least inter-symbol interference over a 2.5 Gbit/s data delivery. Based on this thesis analysis, OCS simulation of POF showed the most reliable power penalty performance and receiver sensitivity at 30-m whilst the BI-SMF fiber produced equal observations at 150-m and more. In observing the free space links of delivering the RoF signal, the attenuation on the received signal power for both POF and BI-SMF was insignificant but expected, as the simulation assumed complete and total collimation of the light beams onto the aperture of the photodetector. OCS scheme for mm-wave generation and transport was explored based on the cost effectiveness of using one external modulator compared to other generation schemes that utilised more than one external modulator. OFM scheme was simulated to transport LTE and Wi-Fi signals along with 60 GHz RF band through both SMF and MMF-POF/BI-SMF cables. OFM transport scheme produced the highest attenuation on LTE, Wi-Fi and mm-wave signals carrying 100 Mbit/s data as simulated POF lengths increased. The best performance POF length was observed at 10-m. The application of offset launch technique at the coupling of SMF and POF showed insignificant improvement on signal bandwidth. The free space OFM transmission also demonstrated negligible change to the received signal power. This reinforces the attributes of deploying OWC system in an in-door environment. In other investigation, the simulated successful delivery of mm-wave signal using RHD scheme modulated and transported 10 Gbit/s data signal over POF and BI-SMF cables. Additional observed unrecorded result also showed BI-SMF cable maintained a 2% reduction of received power for 450-m fiber cable from 150-m. The attributes to RHD includes its low operating power system application and delivery of localised 60 GHz signal for uplink RoF transmission. The conceptualised design of Gigabit data delivery for indoor customer applications either through POF or BI-SMF cable, transporting various wireless channels has been presented in this thesis for the design of a robust next generation Broadband access network to reinforce the fiber-inside-the-home (FiTH) deployment

    Similar works