research

A CFD and FEM Approach to a Multicompartmental Poroelastic Model for CSF Production and Circulation with Applicationsin Hydrocephalus Treatment and Cerebral Oedema

Abstract

This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.This study introduces a Multiple-Network Poroelastic Theory (MPET) model, coupled with finite-volume based Computational fluid dynamics (CFD) for the purpose of studying, in detail, the effects of obstructing Cerebrospinal fluid (CSF) transport within an image-derived cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. Key novelties of this model are the casting of multidimensional MPET in a Finite Element Method (FEM) framework, the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This model is used to demonstrate the impact of fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. Finally, we outline the impact of the FEM based MPET framework in understanding oedema, and its ongoing evolution

    Similar works