research

Proof of two conjectures of Z.-W. Sun on congruences for Franel numbers

Abstract

For all nonnegative integers n, the Franel numbers are defined as fn=k=0n(nk)3. f_n=\sum_{k=0}^n {n\choose k}^3. We confirm two conjectures of Z.-W. Sun on congruences for Franel numbers: \sum_{k=0}^{n-1}(3k+2)(-1)^k f_k &\equiv 0 \pmod{2n^2}, \sum_{k=0}^{p-1}(3k+2)(-1)^k f_k &\equiv 2p^2 (2^p-1)^2 \pmod{p^5}, where n is a positive integer and p>3 is a prime.Comment: 8 pages, minor changes, to appear in Integral Transforms Spec. Func

    Similar works

    Full text

    thumbnail-image

    Available Versions