Impact of Surface Functional Groups and Their Introduction Methods on the Mechanisms of CO2 Adsorption on Porous Carbonaceous Adsorbents

Abstract

Copyright © 2022 The Authors. The utilisation of solid adsorbents for the selective removal of CO2 from major emission points is an attractive method for post-combustion carbon capture due to the inherent potential for retrofit and cost-effectiveness. Although focus in the scientific community is often centred on extremely novel, high-performance and costly material development, the exploitation of carbonaceous adsorbents is another avenue of research proving to be extremely promising. This is even more pronounced when considering the abundance of carbon in various waste streams. The production of carbonaceous adsorbents, however, often requires significant post-treatments to enhance both the textural and physico-chemical properties of the adsorbent, as such, the incorporation of surface functionalities is unavoidable and can often lead to significant improvements to the associated CO2 adsorption. This review aims to critically assess the various routes for surface modification of carbonaceous adsorbents and the implications these may have on the incorporation of surface functional groups. Subsequently, the adsorption mechanisms for CO2 on surface-modified porous carbons are discussed in depth with consideration to the influence of the introduced functionalities. The review concludes with a detailed section on current modelling approaches such as the application of artificial intelligence, Monte Carlo, and Density Functional Theory simulations in this realm of research.UK Engineering and Physical Sciences Research Council (EPSRC) under the project titled “Multiphysics and multiscale modelling for safe and feasible CO2 capture and storage - EP/T033940/1”; UK Carbon Capture and Storage Research Centre (EP/P026214/1) through the flexible funded research programme “Techno-economics of Biomass Combustion Products in the Synthesis of Effective Low-cost Adsorbents for Carbon Capture”; UKCCSRC is supported by the Engineering and Physical Sciences Research Council (EPSRC), UK, as part of the UKRI Energy Programme; EPSRC Impact Accelerator Award (2021)

    Similar works