We model the coherent energy transfer of an electronic excitation within
covalently linked aromatic homodimers from first-principles, to answer whether
the usual models of the bath calculated via detailed electronic structure
calculations can reproduce the key dynamics. For these systems the timescales
of coherent transport are experimentally known from time-dependent polarization
anisotropy measurements, and so we can directly assess the whether current
techniques might be predictive for this phenomenon. Two choices of electronic
basis states are investigated, and their relative merits discussed regarding
the predictions of the perturbative model. The coupling of the electronic
degrees of freedom to the nuclear degrees of freedom is calculated rather than
assumed, and the fluorescence anisotropy decay is directly reproduced.
Surprisingly we find that although TDDFT absolute energies are routinely in
error by orders of magnitude more than the coupling energy, the coherent
transport properties of these dimers can be semi-quantitatively reproduced from
first-principles. The directions which must be pursued to yield predictive and
reliable prediction of coherent transport are suggested.Comment: 22 pages, 7 figure