We study a new bordification of the decorated Teichm\"uller space for a
multiply punctured surface F by a space of filtered screens on the surface that
arises from a natural elaboration of earlier work of McShane-Penner. We
identify necessary and sufficient conditions for paths in this space of
filtered screens to yield short curves having vanishing length in the
underlying surface F. As a result, an appropriate quotient of this space of
filtered screens on F yields a decorated augmented Teichm\"uller space which is
shown to admit a CW decomposition that naturally projects to the augmented
Teichm\"uller space by forgetting decorations and whose strata are indexed by a
new object termed partially oriented stratum graphs.Comment: Final version to appear in Geometriae Dedicat