research

Trajectories of charged particles trapped in Earth's magnetic field

Abstract

I outline the theory of relativistic charged-particle motion in the magnetosphere in a way suitable for undergraduate courses. I discuss particle and guiding center motion, derive the three adiabatic invariants associated with them, and present particle trajectories in a dipolar field. I provide twelve computational exercises that can be used as classroom assignments or for self-study. Two of the exercises, drift-shell bifurcation and Speiser orbits, are adapted from active magnetospheric research. The Python code provided in the supplement can be used to replicate the trajectories and can be easily extended for different field geometries.Comment: 10 pages, 7 figures. Submitted to American Journal of Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions