Cryogenic Operation of sCMOS Image Sensors

Abstract

Scientific CMOS image sensors have lower read noise and dark current than charge coupled devices. They are also uniquely qualified for operation at cryogenic temperatures due to their MOSFET pixel architecture. This paper follows the design of a cryogenic imaging system to be used as a star tracking rocket attitude regulation system. The detector was proven to retain almost all its sensitivity at cryogenic temperatures with acceptably low read noise. Once the star tracker successfully maintains rocket attitude during the flight of the CIBER-2 experiment, the technology readiness level of scientific CMOS detectors will advance enough that they could see potential applications in deep space imaging experiments

    Similar works