Multiwavelength Observations of Young Stars and Their Circumstellar Disks

Abstract

Observational studies of star and planet formation represent a fundamental means to understand the origins of exoplanetary systems and our own solar system. In this dissertation I present a multiwavelength approach to study a wide range of stages of the evolution of protostars and pre-main sequence (pre-MS) stars. I have investigated, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in young stellar objects is related to protostellar evolutionary state. Among a subsample of 52 X-ray-emitting young stars in L1630, I find that the earliest stages of young stellar evolution show the highest levels of X-ray variability, indicative of high levels of magnetic activity during star formation. I also find evidence of active magnetospheric accretion in three L1630 stars with circumstellar disks. I also present multiwavelength analyses of several phenomenologically interesting young stars at different stages of pre-MS stellar evolution. I investigate, via contemporaneous X-ray and optical/IR observations, the nearby, pre-main sequence star/disk systems T Chamaeleontis (T Cha) and TWA 30A and 30B. I analyze X-ray and optical emission signatures of accretion and magnetic activity in T Cha, and infer the X-ray absorbing properties of its circumstellar disk. Like T Cha, each component of the wide binary TWA 30A and 30B is viewed through a highly inclined circumstellar disk. Both TWA 30A and 30B display large near-IR variability, suggestive of (respectively) variable obscuration of the stellar photosphere and a possible disk-rim warp. In the case of T Cha and TWA 30A, I find a correlation of optical/near-IR and X-ray extinction consistent with that of photospheric obscuration from an intervening disk clump

    Similar works