research

Multilevel Coding Schemes for Compute-and-Forward with Flexible Decoding

Abstract

We consider the design of coding schemes for the wireless two-way relaying channel when there is no channel state information at the transmitter. In the spirit of the compute and forward paradigm, we present a multilevel coding scheme that permits computation (or, decoding) of a class of functions at the relay. The function to be computed (or, decoded) is then chosen depending on the channel realization. We define such a class of functions which can be decoded at the relay using the proposed coding scheme and derive rates that are universally achievable over a set of channel gains when this class of functions is used at the relay. We develop our framework with general modulation formats in mind, but numerical results are presented for the case where each node transmits using the QPSK constellation. Numerical results with QPSK show that the flexibility afforded by our proposed scheme results in substantially higher rates than those achievable by always using a fixed function or by adapting the function at the relay but coding over GF(4).Comment: This paper was submitted to IEEE Transactions on Information Theory in July 2011. A shorter version also appeared in the proceedings of the International Symposium on Information Theory in August 2011 without the proof of the main theore

    Similar works

    Full text

    thumbnail-image

    Available Versions