Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Abstract

The balancing act of an inverted pendulum with a robotic manipulator is a classical benchmark for testing modern control strategies in conjunction with fast sensor-guided movements. From the control design perspective, it presents a challenging and difficult problem as the system is open-loop unstable and includes nonlinear effects in the actuators, such as friction, backlash, and elasticity. In addition, the necessity of a sensor system that can measure the inclination angles of the pendulum contributes to the complexity of the balancing problem. The pendulum is projected onto the xz and yz planes of the inertial coordinate system. These projections are controlled by a state-space controller. A specially developed sensor system allows the contactless measurement of the inclination angles of the pendulum. This system consists of a small magnet, placed at the bottom of the pendulum and Hall-effect sensors placed below the end effector

    Similar works