Modeling and Control of the Ball and Beam Process

Abstract

One of the most difficult problems that an engineer who works with modeling deals with, is the question about how to translate a physical phenomenon into a set of equations. It is usually difficult to capture all dynamics and phenomena, so one usually strives for a set of equations that describes the physical system approximately and adequately with the accuracy for the purpose. In our case, we model the dynamics relevant for control design. The topic of this thesis was to do an in-depth study of the Ball and Beam process. Two different experimental implementation of the Ball and Beam process have been considered, both available at the course lab at the Department of Automatic Control, Lund. The first step consisted of deriving the equations of motion, that is, to do the mathematical modeling of the process. In order to implement this model Modelica has been used. Modelica, which is a powerful language for modeling of physical systems, uses the tool Dymola. Another model was designed also with Modelica but with the help of the extension of the multi body library, which uses a methodology based on object orientation and symbolic manipulation of equations. With this last model it was possible to visualize an animation in real time 3D. The following step of the project was to do control design for the different models. The obtained simulations were shown in Dymola and Simulink. Finally experiments on the real process were developed, based on vision feedback

    Similar works