This work presents new methods and algorithms for tracking the shape and
trajectory of moving reflecting obstacles with broken rays, or rays reflecting
at an obstacle. While in tomography the focus of the reconstruction method is
to recover the velocity structure of the domain, the shape and trajectory
reconstruction procedure directly finds the shape and trajectory of the
obstacle. The physical signal carrier for this innovative method are ultrasonic
beams. When the speed of sound is constant, the rays are straight line segments
and the shape and trajectory of moving objects will be reconstructed with
methods based on the travel time equation and ellipsoid geometry. For variable
speed of sound, we start with the eikonal equation and a system of differential
equations that has its origins in acoustics and seismology. In this case, the
rays are curves that are not necessarily straight line segments and we develop
algorithms for shape and trajectory tracking based on the numerical solution of
these equations. We present methods and algorithms for shape and trajectory
tracking of moving obstacles with reflected rays when the location of the
receiver of the reflected ray is not known in advance. The shape and trajectory
tracking method is very efficient because it is not necessary for the reflected
signal to traverse the whole domain or the same path back to the transmitter.
It could be received close to the point of reflection or far away from the
transmitter. This optimizes the energy spent by transmitters for tracking the
object, reduces signal attenuation and improves image resolution. It is a safe
and secure method. We also present algorithms for tracking the shape and
trajectory of absorbing obstacles. The new methods and algorithms for shape and
trajectory tracking enable new applications and an application to one-hop
Internet routing is presented.Comment: 22 pages, 2 figures, 2 table