Identification of the effectiveness of associative rhizobacteria in spring wheat cultivation

Abstract

Received: January 31st, 2021 ; Accepted: October 5th, 2021 ; Published: October 19th, 2021 ; Correspondence: [email protected] maximum increase in wheat yield (by 67% to the control), associated with a decrease in the root rot development by 19%, an increase in the productive bushiness by 18%, the spike weight by 26%, in the grains number per spike by 8% was noted when using the Bacillus subtilis strain 124-11; the strain effect on leaf diseases was insignificant (2–5%). The plants differed in the maximum changes (to control) in the total bushiness by 59%, the plants vegetative part weight by 27%, the flag leaf area by 21%, the pre-flag leaf area by 28%, the roots numbers and weight by 20% and 62%. After plants treatments with the Pseudomonas fluorescens strain SPB2137, the wheat maturation period was reduced by 9% (to the control), wheat yield increased by 58% due to a decrease in the development of root rot and septoria by 18%, the yellow rust pustules area by 44%; the productive bushiness and plant height increased by 25% and 19%, the plant vegetative weight by 21%, the spike length by 4%. The most expressed protective and growth-stimulating effect was shown by the Sphingomonas sp. K1B, which caused a maximum decrease (to the control) in the root rot and yellow rust development by 22% and 7%, the strips length by 22%, the pustules number in the strip by 29%, brown rust by 10%, septoria by 11%. Wheat plants were characterized by a large number and length of roots by 17% and 13%, root weight by 49%, a maximum increase in the nodal roots number and length by 15% and 17%; total bushiness by 34.5%; a maximum increase in plant vegetative weight by 37%; the spike length by 3%

    Similar works