research

Control and Synchronization of Neuron Ensembles

Abstract

Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.Comment: 29 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions