research

A two-stage approach to relaxation in billiard systems of locally confined hard spheres

Abstract

We consider the three-dimensional dynamics of systems of many interacting hard spheres, each individually confined to a dispersive environment, and show that the macroscopic limit of such systems is characterized by a coefficient of heat conduction whose value reduces to a dimensional formula in the limit of vanishingly small rate of interaction. It is argued that this limit arises from an effective loss of memory. Similarities with the diffusion of a tagged particle in binary mixtures are emphasized.Comment: Submitted to Chaos, special issue "Statistical Mechanics and Billiard-Type Dynamical Systems

    Similar works

    Full text

    thumbnail-image

    Available Versions