research

An approach to harmonic load- and source-pull measurements for high-efficiency PA design

Abstract

High-efficiency power-amplifier design requires numerous efforts to investigate both input and output harmonic terminations effects. A simplified theoretical approach to clarify the relevance of such terminations is presented here, and design criteria to improve efficiency for high-frequency applications are briefly discussed. An advanced active load/source-pull test-bench has been used to validate theoretical harmonic tuning techniques, characterizing an active device. The adopted optimization strategy is presented, together with measured results obtained with a medium-power 1-mm MESFET at 1 GHz. Input second harmonic impedances effects are stressed, showing a drain efficiency spread between 37%-49% for a fixed input power level, corresponding to 1-dB compression. Finally, as predicted by the presented theory, after input second harmonic tuning, further improvements are obtained, increasing fundamental output load resistive part, demonstrating an additional drain efficiency enhancement, which reaches a level of 55% at 1-dB compression

    Similar works