CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Numerical method for calculation of the generalized natural modes of an inhomogeneous optical fiber
Authors
Karchevskiy E.
Publication date
1 March 2020
Publisher
Abstract
The eigenvalue problem for generalized natural modes of an inhomogeneous optical fiber without a sharp boundary is formulated as a problem for the set of time-harmonic Maxwell equations with Reichardt condition at infinity in the cross-sectional plane. The generalized eigenvalues of this problem are the complex propagation constants on a logarithmic Reimann surface. The original problem is reduced to a nonlinear spectral problem with Fredholm integral operator. Theorem on spectrum localization is proved, and then it is proved that the set of all eigenvalues of the original problem can only be a set of isolated points on the Reimann surface, ant it also proved that each eigenvalue depends continuously on the frequency and refraction index and can appear and disappear only at the boundary of the Reimann surface. The Galerkin method for numerical calculation of the generalized natural modes is proposed, and the convergence of the method is proved. © 2008 IEEE
Similar works
Full text
Available Versions
National Open Repository Aggregator (NORA)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:rour.neicon.ru:rour/181150
Last time updated on 04/04/2020