We prove the most general theorem about spectral stability of multi-site
breathers in the discrete Klein-Gordon equation with a small coupling constant.
In the anti-continuum limit, multi-site breathers represent excited
oscillations at different sites of the lattice separated by a number of "holes"
(sites at rest). The theorem describes how the stability or instability of a
multi-site breather depends on the phase difference and distance between the
excited oscillators. Previously, only multi-site breathers with adjacent
excited sites were considered within the first-order perturbation theory. We
show that the stability of multi-site breathers with one-site holes change for
large-amplitude oscillations in soft nonlinear potentials. We also discover and
study a symmetry-breaking (pitchfork) bifurcation of one-site and multi-site
breathers in soft quartic potentials near the points of 1:3 resonance.Comment: 34 pages, 12 figure