research

Transport through a quantum spin Hall quantum dot

Abstract

Quantum spin Hall insulators, recently realized in HgTe/(Hg,Cd)Te quantum wells, support topologically protected, linearly dispersing edge states with spin-momentum locking. A local magnetic exchange field can open a gap for the edge states. A quantum-dot structure consisting of two such magnetic tunneling barriers is proposed and the charge transport through this device is analyzed. The effects of a finite bias voltage beyond linear response, of a gate voltage, and of the charging energy in the quantum dot are studied within a combination of Green-function and master-equation approaches. Among other results, a partial recurrence of non-interacting behavior is found for strong interactions, and the possibility of controlling the edge magnetization by a locally applied gate voltage is proposed.Comment: 12 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions