CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Voltammetric detection of synthetic water-soluble phenolic antioxidants using carbon nanotube based electrodes
Authors
Budnikov H.
Gainetdinova A.
+4 more
Grazhulene S.
Morozov M.
Red'kin A.
Ziyatdinova G.
Publication date
29 February 2020
Publisher
Abstract
Glassy carbon electrodes (GCE) modified with carbon nanotubes (CNT) have been created for detection of phenolic compounds-one of the important group of antioxidants in life sciences. The surface of electrode has been characterized by atomic force microscopy. The presence of CNT leads to an at least 20-fold increase in the surface roughness of the electrode. The CNT layer displays closely intertwined vermicular structures with high degree of homogeneity at CNT suspension concentration of 0.2-0.5 mg L -1. Synthetic water-soluble antioxidants (hydroquinone, catechol, pyrogallol, and their derivatives) are electrochemically active on bare GCE and CNT-modified GCE in phosphate buffer solution pH 7.4. Effect of substitutes in molecular structure of phenolic antioxidants has been evaluated. In several cases, oxidation at CNT-modified GCE occurs at potentials that are less positive by 100-200 mV in comparison to bare GCE. The electrodes were studied with respect to their capability of phenols voltammetric sensing. CNT-modified GCE display an enlarged linear range in the calibration graphs and lower detection limits. Voltammetric method for determination of hydroquinone, catechol, pyrogallol, and their derivatives has been developed. © Springer-Verlag 2010
Similar works
Full text
Available Versions
National Open Repository Aggregator (NORA)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:rour.neicon.ru:rour/178703
Last time updated on 04/04/2020
National Open Repository Aggregator (NORA)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:rour.neicon.ru:rour/134390
Last time updated on 04/04/2020