Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes

Abstract

The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L- carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D- carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.</p

    Similar works