Novel Multi-Scale Filter Profile-Based Framework for VHR Remote Sensing Image Classification

Abstract

Publisher's version (útgefin grein).Filter is a well-known tool for noise reduction of very high spatial resolution (VHR) remote sensing images. However, a single-scale filter usually demonstrates limitations in covering various targets with different sizes and shapes in a given image scene. A novel method called multi-scale filter profile (MFP)-based framework (MFPF) is introduced in this study to improve the classification performance of a remote sensing image of VHR and address the aforementioned problem. First, an adaptive filter is extended with a series of parameters for MFP construction. Then, a layer-stacking technique is used to concatenate the MPFs and all the features into a stacked vector. Afterward, principal component analysis, a classical descending dimension algorithm, is performed on the fused profiles to reduce the redundancy of the stacked vector. Finally, the spatial adaptive region of each filter in the MFPs is used for post-processing of the obtained initial classification map through a supervised classifier. This process aims to revise the initial classification map and generate a final classification map. Experimental results performed on the three real VHR remote sensing images demonstrate the effectiveness of the proposed MFPF in comparison with the state-of-the-art methods. Hard-tuning parameters are unnecessary in the application of the proposed approach. Thus, such a method can be conveniently applied in real applications.This research was funded by the National Science Foundation China (61701396 and 41501378) and the Natural Science Foundation of Shaan Xi Province (2018JQ4009).Peer Reviewe

    Similar works