slides

Direct Observation of an Interface Dipole between Two Metallic Oxides Caused by Localized Oxygen Vacancies

Abstract

Oxygen vacancies are increasingly recognized to play a role in phenomena observed at transition-metal oxide interfaces. Here we report a study of SrRuO3/La0.7Sr0.3MnO3 (SRO/LSMO) interfaces using a combination of quantitative aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and density-functional calculations. Cation displacements are observed at the interface, indicative of a dipole-like electric field even though both materials are nominally metallic. The observed displacements are reproduced by theory if O vacancies are present in the near-interface LSMO layers. The results suggest that atomic-scale structural mapping can serve as a quantitative indicator of the presence of O vacancies at interfaces

    Similar works

    Full text

    thumbnail-image

    Available Versions