CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Anomalies in the carbonate system of Red Sea coastal habitats
Authors
Susana Agusti
Kimberlee Baldry
+4 more
James H. Churchill
Carlos M. Duarte
Daniel C. McCorkle
Vincent Saderne
Publication date
23 May 2019
Publisher
'Copernicus GmbH'
Doi
Abstract
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baldry, K., Saderne, V., McCorkle, D. C., Churchill, J. H., Agust, S., & Duarte, C. M. Anomalies in the carbonate system of Red Sea coastal habitats. Biogeosciences, 17(2), (2020): 423-439, doi:10.5194/bg-17-423-2020.We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation–precipitation and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear relationships that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in >70 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes). The results of this study highlight the importance of resolving the influences of water residence times, mixing and upstream habitats on mediating the carbonate system and coastal air–sea carbon dioxide fluxes over coastal habitats in the Red Sea.This research has been supported by the King Abdullah University of Science and Technology (KAUST) (grant nos. BAS/1/1071-01-01 and BAS/1/1072-01-01) and the Investment in Science fund at WHOI
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
KAUST Repository (King Abdullah University of Science and Technology)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.kaust.edu.sa:10...
Last time updated on 30/12/2025
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 27/03/2020