Abstract

We rederive a popular nonsemisimple fusion algebra in the braided context, from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter-Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet W-algebra in the (p,1) logarithmic models of conformal field theory. For this, the category of Yetter-Drinfeld modules is to be regarded as an \textit{entwined} category (the one with monodromy, but not with braiding).Comment: 36 pages, amsart++, times, xy. V3: references added, an unnecessary assumption removed, plus some minor change

    Similar works

    Full text

    thumbnail-image

    Available Versions