We rederive a popular nonsemisimple fusion algebra in the braided context,
from a Nichols algebra. Together with the decomposition that we find for the
product of simple Yetter-Drinfeld modules, this strongly suggests that the
relevant Nichols algebra furnishes an equivalence with the triplet W-algebra in
the (p,1) logarithmic models of conformal field theory. For this, the category
of Yetter-Drinfeld modules is to be regarded as an \textit{entwined} category
(the one with monodromy, but not with braiding).Comment: 36 pages, amsart++, times, xy. V3: references added, an unnecessary
assumption removed, plus some minor change