Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl
precursors have been tested as support films for energy-filtered transmission
electron microscopy (EFTEM) of biological specimens. Due to their high
transparency CNM are ideal substrates for electron energy loss spectroscopy
(EELS) and electron spectroscopic imaging (ESI) of stained and unstained
biological samples. Virtually background-free elemental maps of tobacco mosaic
virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm
thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM)
comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as
supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded
TMV on cCNM and compared the results with images of ice-embedded TMV on
conventional carbon film (CC), thus analyzing the gain in contrast for TMV on
cCNM in a quantitative manner. In addition we have developed a method for the
preparation of vitrified specimens, suspended over the holes of a conventional
holey carbon film, while backed by ultrathin cCNM