Abstract

The high number of planet discoveries made in the last years provides a good sample for statistical analysis, leading to some clues on the distributions of planet parameters, like masses and periods, at least in close proximity to the host star. We likely need to wait for the extremely large telescopes (ELTs) to have an overall view of the extrasolar planetary systems. In this context it would be useful to have a tool that can be used for the interpretation of the present results,and also to predict what the outcomes would be of the future instruments. For this reason we built MESS: a Monte Carlo simulation code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. In addition to the code description, we present here some of its applications to actually probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planetsComment: 14 pages, 16 figure

    Similar works