research

Model-Reference Adaptive Control of Distributed Lagrangian Infinite-Dimensional Systems Using Hamiltons Principle

Abstract

This paper presents a Hamilton's principle for distributed control of infinite-dimensional systems modeled by a distributed form of the Euler-Lagrange method. The distributed systems are governed by a system of linear partial differential equations in space and time. A generalized potential energy expression is developed that can capture most physical systems including those systems that have no spatial distribution. The Hamilton's principle is applied to derive distributed feedback control methods without resorting to the standard weak-form discretization approach to convert an infinite-dimensional systems to a finite-dimensional systems. It can be shown by the principle of least action that the distributed control synthesized by the Hamilton's principle is a minimum-norm control. A model-reference adaptive control framework is developed for distributed Lagrangian systems in the presence of uncertainty. The theory is demonstrated by an application of adaptive flutter suppression control of a flexible aircraft wing

    Similar works