Several novel methods for performing calculations relevant to quantum
chemistry on quantum computers have been proposed but not yet explored
experimentally. Virtual quantum subspace expansion [T. Takeshita et al., Phys.
Rev. X 10, 011004 (2020)] is one such algorithm developed for modeling complex
molecules using their full orbital space and without the need for additional
quantum resources. We implement this method on the IBM Q platform and calculate
the potential energy curves of the hydrogen and lithium dimers using only two
qubits and simple classical post-processing. A comparable level of accuracy
would require twenty qubits with previous approaches. We also develop an
approach to minimize the impact of experimental noise on the stability of a
generalized eigenvalue problem that is a crucial component of the algorithm.
Our results demonstrate that virtual quantum subspace expansion works well in
practice