CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Tropical cyclone rainbands can trigger meteotsunamis
Authors
David S. Nolan
Maitane Olabarrieta
Luming Shi
John C. Warner
Publication date
2 February 2020
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shi, L., Olabarrieta, M., Nolan, D. S., & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nature Communications, 11(1), (2020): 678, doi:10.1038/s41467-020-14423-9.Tropical cyclones are one of the most destructive natural hazards and much of the damage and casualties they cause are flood-related. Accurate characterization and prediction of total water levels during extreme storms is necessary to minimize coastal impacts. While meteotsunamis are known to influence water levels and to produce severe consequences, their impacts during tropical cyclones are underappreciated. This study demonstrates that meteotsunami waves commonly occur during tropical cyclones, and that they can contribute significantly to total water levels. We use an idealized coupled ocean–atmosphere–wave numerical model to analyze tropical cyclone-induced meteotsunami generation and propagation mechanisms. We show that the most extreme meteotsunami events are triggered by inherent features of the structure of tropical cyclones: inner and outer spiral rainbands. While outer distant spiral rainbands produce single-peak meteotsunami waves, inner spiral rainbands trigger longer lasting wave trains on the front side of the tropical cyclones.We thank all the developers of COAWST, ROMS, WRF, and SWAN models. D.N. was supported by NSF grant AGS-1654831. We would like to thank Dr. K. Bagamian for her editorial and writing suggestions. We would like to thank Dr. A. Aretxabaleta for the internal US Geological Survey internal revision and suggestions
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
University of Miami: Scholarship@Miami
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:alma.01UOML_INST:113805007...
Last time updated on 16/01/2024
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 27/03/2020