Orbital non-Fermi-liquid behavior in cubic ruthenates

Abstract

We peruse various anomalous physical responses of the cubic (ferromagnetic SrRuO3 and paramagnetic CaRuO3) ruthenates, such as fractional power-law conductivity, anomalous Raman line shapes, and Hall currents. We show how these exciting power-law observations are naturally described within a new, local (orbital) non-Fermi-liquid state arising from strong, multiorbital Coulomb interactions. Introducing a multiorbital, correlated model treated within the dynamical mean-field theory, we also find two distinct relaxation rates for relaxation of transport in complete agreement with experiment

    Similar works