Compressive current response mapping of photovoltaic devices using MEMS mirror arrays

Abstract

Understanding the performance and aging mechanisms in photovoltaic devices requires a spatial assessment of the device properties. The current dominant technique, electroluminescence, has the disadvantage that it assesses radiative recombination only. A complementary method, laser beam-induced current (LBIC), is too slow for high-throughput measurements. This paper presents the description, design, and proof of concept of a new measurement method to significantly accelerate LBIC measurements. The method allows mapping of the current response map of solar cells and modules at drastically reduced acquisition times. This acceleration is achieved by projecting a number of mathematically derived patterns on the sample by using a digital micromirror device (DMD). The spatially resolved signal is then recovered using compressed sensing techniques. The system has fewer moving parts and is demonstrated to require fewer overall measurements. Compared with conventional LBIC imaging using galvanic mirror arrangements or xy scanners, the use of a DMD allows a significantly faster and more repeatable illumination of the device under test. In this proof-of-concept instrument, sampling patterns are drawn from Walsh–Hadamard matrices, which are one of the many operators that can be used to realize this technique. This has the advantage of the signal-to-noise ratio of the measurement being significantly increased and thus allows elimination of the standard lock-in techniques for signal detection, reducing measurement costs, and increasing measurement speed further. This new method has the potential to substantially decrease the time taken for measurement, which demonstrates a dramatic improvement in the utility of LBIC instrumentation

    Similar works