Abstract

The piston ring pack accounts for a disproportionate amount of the total engine frictional losses. The frictional behaviour of piston rings is significantly affected and governed by its flexible dynamics. The dynamically changing shape of the ring determines its contact geometry with the cylinder liner and hence affects the frictional losses. The compression ring undergoes a multitude of complex motions during the engine cycle prescribed by the gas pressure, contact reaction, ring tension, friction between the ring and its groove and inertial forces that excite a plethora of the ring’s modal responses. This adversely compromises the functionality of the ring through a number of undesired phenomena such as ring flutter, twist, rotation and jump. Therefore, a prerequisite for improving the prediction of tribological conditions is an accurate determination of the ring’s elastodynamic response. This paper presents a methodology to directly solve the governing differential equations of motion for different forms of beam cross-section, where the shear and mass centres are not coincident, typical of the complex cross-sections of a variety of different piston compression rings. Combined numerical and experimental investigations are undertaken to determine the dynamic behaviour of the compression ring

    Similar works