CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Chromophores from hexeneuronic acids: identification of HexA-derived chromophores
Authors
Antje Potthast (1300812)
Felix Plasser (4765107)
+7 more
Hubert Hettegger (6280352)
Karin Krainz (7163378)
Markus Bacher (2562943)
Nele Sophie Zwirchmayr (4528150)
Takashi Hosoya (1300818)
Thomas Dietz (414614)
Thomas Rosenau (1300803)
Publication date
1 January 2017
Publisher
Abstract
© 2017, The Author(s). Hexeneuronic acids (HexA) have long been known as triggers for discoloration processes in glucuronoxylan-containing cellulosic pulps. They are formed under the conditions of pulping from 4-O-methylglucuronic acid residues, and are removed in an “A stage” along the bleaching sequences, which mainly comprises acidic washing treatments. The chemical structures of HexA-derived chromophoric compounds 4–8, which make up 90% of the HexA-derived chromophores, are reported here for the first time. The compounds are ladder-type, mixed quinoid-aromatic oligomers of the bis(furano)-[1,4]benzoquinone and bis(benzofurano)-[1,4] benzoquinone type. The same chromophoric compounds are generated independently of the starting material, which can be either a) HexA in pulp, b) the HexA model compound methyl 1- 13 C-4-deoxy-β-L-threo-hex-4-enopyranosiduronic acid (1) or c) a mixture of the primary degradation intermediates of 1, namely 5-formyl-furancarboxylic acid (2) and 2-furancarboxylic acid (3). Isotopic labeling ( 13 C) in combination with NMR spectroscopy and mass spectrometry served for structure elucidation, and final confirmation was provided by X-ray structure analysis. 13 C-Isotopic labeling was also used to establish the formation mechanisms, showing all the compounds to be composed of condensed, but otherwise largely intact, 2-carbonylfuran and 2-carbonylfuran-5-carboxylic acid moieties. These results disprove the frequent assumption that HexA-derived or furfural-derived chromophores are linear furanoid polymers, and might have a direct bearing on structure elucidation studies of “humins”, which are formed as dark-colored byproducts in depolymerization of pentosans and hexosans in different biorefinery scenarios
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Loughborough University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/93906...
Last time updated on 26/03/2020