System on fabrics utilising distributed computing

Abstract

The main vision of wearable computing is to make electronic systems an important part of everyday clothing in the future which will serve as intelligent personal assistants. Wearable devices have the potential to be wearable computers and not mere input/output devices for the human body. The present thesis focuses on introducing a new wearable computing paradigm, where the processing elements are closely coupled with the sensors that are distributed using Instruction Systolic Array (ISA) architecture. The thesis describes a novel, multiple sensor, multiple processor system architecture prototype based on the Instruction Systolic Array paradigm for distributed computing on fabrics. The thesis introduces new programming model to implement the distributed computer on fabrics. The implementation of the concept has been validated using parallel algorithms. A real-time shape sensing and reconstruction application has been implemented on this architecture and has demonstrated a physical design for a wearable system based on the ISA concept constructed from off-the-shelf microcontrollers and sensors. Results demonstrate that the real time application executes on the prototype ISA implementation thus confirming the viability of the proposed architecture for fabric-resident computing devices

    Similar works