A Monolithic Gm-C Filter based Very Low Power, Programmable, and Multi-Channel Harmonic Discrimination System using Analog Signal Processing

Abstract

A highly selective monolithic band-pass filter with programmable characteristics at micro-power operation is presented. Very low power signal processing is of great interest in wireless sensing and Internet-of-Things applications. This filter enables long-term battery powered operation of a highly selective harmonic signal discriminator for an analog signal processing system. The Gm-C biquadratic circuits were fabricated in a 0.18-μm [micrometer] CMOS process. Each 2nd-order biquad filter nominally consumes 20 μW [microwatt] and can be programmed for the desired gain (0db3dB), quality factor (5 to 20), and center-frequency from 1kHz to 100kHz. The 8th-order filter channel achieved an effective quality factor of 30 at 100kHz with an overall power consumption of 108 μW

    Similar works