slides

Metabolic multi-stability and hysteresis in a model aerobe-anaerobe microbiome community

Abstract

Changes in the composition of the human microbiome are associated with health and disease. Some microbiome states persist in seemingly unfavorable conditions, e.g., the proliferation of aerobe-anaerobe communities in oxygen-exposed environments in wounds or small intestinal bacterial overgrowth. However, it remains unclear how different stable microbiome states can exist under the same conditions, or why some states persist under seemingly unfavorable conditions. Here, using two microbes relevant to the human microbiome, we combine genome-scale mathematical modeling, bioreactor experiments, transcriptomics, and dynamical systems theory, to show that multi-stability and hysteresis (MSH) is a mechanism that can describe the shift from an aerobe-dominated state to a resilient, paradoxically persistent aerobe-anaerobe state. We examine the impact of changing oxygen and nutrient regimes and identify factors, including changes in metabolism and gene expression, that lead to MSH. When analyzing the transitions between the two states in this system, the familiar conceptual connection between causation and correlation is broken and MSH must be used to interpret the dynamics. Using MSH to analyze microbiome dynamics will improve our conceptual understanding of the stability of microbiome states and the transitions among microbiome states

    Similar works