We have found that non-STEM majors taking either a conceptual physics or
astronomy course at two regional comprehensive institutions score significantly
lower pre-instruction on the Lawson's Classroom Test of Scientific Reasoning
(LCTSR) in comparison to national average STEM majors. The majority of non-STEM
students can be classified as either concrete operational or transitional
reasoners in Piaget's theory of cognitive development, whereas in the STEM
population formal operational reasoners are far more prevalent. In particular,
non-STEM students demonstrate significant difficulty with proportional and
hypothetico-deductive reasoning. Pre-scores on the LCTSR are correlated with
normalized learning gains on various concept inventories. The correlation is
strongest for content that can be categorized as mostly theoretical, meaning a
lack of directly observable exemplars, and weakest for content categorized as
mostly descriptive, where directly observable exemplars are abundant. Although
the implementation of research-verified, interactive engagement pedagogy can
lead to gains in content knowledge, significant gains in theoretical content
(such as force and energy) are more difficult with non-STEM students. We also
observe no significant gains on the LCTSR without explicit instruction in
scientific reasoning patterns. These results further demonstrate that
differences in student populations are important when comparing normalized
gains on concept inventories, and the achievement of significant gains in
scientific reasoning requires a re-evaluation of the traditional approach to
physics for non-STEM students.Comment: 18 pages, 4 figures, 3 table