Numerical simulation of bubble growth in a supersaturated solution

Abstract

In this paper, a Volume of Fluid (VOF) based approach to simulate the growth of a pre-existing bubble in a supersaturated solution is developed and implemented in OpenFOAMⓇ. The model incorporates the Compressive Continuous Species Transfer approach to describe the transport of dissolved gas and surface tension is treated using the Sharp Surface Force method. The driving force for bubble growth is defined using Fick’s 1st law and a Sherwood number based correlation. The source terms for the governing equations are implemented by extending the work by Hardt and Wondra, J. Comp. Phys. 227 (2008) 5871–5895. The predictions of the proposed solver is compared against theoretical models for bubble growth in supersaturated solutions. The effect of spurious currents, which are generated while modelling surface tension, on bubble growth is also investigated. The proposed approach is used to model the growth of a rising bubble in the supersaturated solution

    Similar works

    Full text

    thumbnail-image