We study the acoustic phonon response of crystals hosting a gapped
time-reversal symmetry breaking electronic state. The phonon effective action
can in general acquire a dissipationless "Hall" viscosity, which is determined
by the adiabatic Berry curvature of the electron wave function. This Hall
viscosity endows the system with a characteristic frequency, \omega_v; for
acoustic phonons of frequency \omega, it shifts the phonon spectrum by an
amount of order (\omega/\omega_v)^2 and it mixes the longitudinal and
transverse acoustic phonons with a relative amplitude ratio of \omega/\omega_v
and with a phase shift of +/- \pi/2, to lowest order in \omega/\omega_v. We
study several examples, including the integer quantum Hall states, the quantum
anomalous Hall state in Hg_{1-y}Mn_{y}Te quantum wells, and a mean-field model
for p_x + i p_y superconductors. We discuss situations in which the acoustic
phonon response is directly related to the gravitational response, for which
striking predictions have been made. When the electron-phonon system is viewed
as a whole, this provides an example where measurements of Goldstone modes may
serve as a probe of adiabatic curvature of the wave function of the gapped
sector of a system.Comment: 14 page