Evaluation of oil/gas infrastructure exposure to climate change burdens in the Niger Delta

Abstract

Climate change extreme weather events such as flood, rising temperature and windstorms pose significant threats to oil and gas infrastructure in the Niger. Due to a gap in evaluation of assets exposure in the region, little is known about their level of exposure hierarchies. In this paper, analytic hierarchy process (AHP) is used to evaluate the exposure of selected oil and gas infrastructure to prevailing climate burdens for sustainable adaptation planning. A combination of observational and interdisciplinary stakeholder decision-making process in four (4) multinational oil companies was used to elicit data through focus group and face-to-face interviews. Participants pairwise compared selected infrastructure using AHP questionnaire for pairwise comparison of infrastructure in a matrix system. Multiple-input (Mi-AHP) analysis revealed assets exposure to climate burdens in the following order; pipelines, terminals, roads/bridges, flow stations, loading bay, transformers/HVC and oil well-heads. Exposure is forces vulnerability of infrastructure to flood and direct heatwaves while the presence of climate burdens and proximity to areas below 4.5 m above sea level further exacerbate exposure. The research also found that interdependence, criticality, obsolescence, and adaptive capacity are other factors responsible for exposure and vulnerability of infrastructure in the Niger Delta. The result further revealed that infrastructure with weak adaptive capacities and significant obsolescence are more vulnerable if exposed to severe climate burdens. The outcome of this investigation provide hands-on data for responsible stakeholders and policymakers in the oil and gas industry for effective and sustainable planning and prioritisation of adaptation investment strategies

    Similar works