Following on from our work concerning travellers’ preferences in public transportation networks (Wu and Hartley, 2004), we introduce the concept of stochasticity to our algorithms. Stochasticity greatly increases the complexity of the route finding problem, so greater algorithmic efficiency becomes imperative. Public transportation networks (buses, trains) have two important features: edges can only be traversed at certain points in time and the weights of these edges change in a day and have an uncertainty associated with them. These features determine that a public transportation network is a stochastic and time-dependent network. Finding multiple shortest paths in a both stochastic and time-dependent network is currently regarded as the most difficult task in the route finding problems (Loui, 1983). This paper discusses the use of k-shortest-paths (KSP) algorithms to find optimal route(s) through a network in which the edge weights are defined by probability distributions. A comprehensive review of shortest path(s) algorithms with probabilistic graphs was conducted