Cavity optomechanics enables active manipulation of mechanical resonators
through backaction cooling and amplification. This ability to control
mechanical motion with retarded optical forces has recently spurred a race
towards realizing a mechanical resonator in its quantum ground state. Here,
instead of quenching optomechanical motion, we demonstrate high amplitude
operation of nanomechanical resonators by utilizing a highly efficient phonon
generation process. In this regime, the nanomechanical resonators gain
sufficient energy from the optical field to overcome the large energy barrier
of a double well potential, leading to nanomechanical slow-down and zero
frequency singularity, as predicted by early theories . Besides fundamental
studies and interests in parametric amplification of small forces,
optomechanical backaction is also projected to open new windows for studying
discrete mechanical states, and to foster applications. Here we realize a
non-volatile mechanical memory element, in which bits are written and reset via
optomechanical backaction by controlling the mechanical damping across the
barrier. Our study casts a new perspective on the energy dynamics in coupled
mechanical resonator - cavity systems and enables novel functional devices that
utilize the principles of cavity optomechanics.Comment: 22 pages, 5 figure