The recursive least-squares (RLS) algorithm has well-documented merits for
reducing complexity and storage requirements, when it comes to online
estimation of stationary signals as well as for tracking slowly-varying
nonstationary processes. In this paper, a distributed recursive least-squares
(D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless
sensor networks. Distributed iterations are obtained by minimizing a separable
reformulation of the exponentially-weighted least-squares cost, using the
alternating-minimization algorithm. Sensors carry out reduced-complexity tasks
locally, and exchange messages with one-hop neighbors to consent on the
network-wide estimates adaptively. A steady-state mean-square error (MSE)
performance analysis of D-RLS is conducted, by studying a stochastically-driven
`averaged' system that approximates the D-RLS dynamics asymptotically in time.
For sensor observations that are linearly related to the time-invariant
parameter vector sought, the simplifying independence setting assumptions
facilitate deriving accurate closed-form expressions for the MSE steady-state
values. The problems of mean- and MSE-sense stability of D-RLS are also
investigated, and easily-checkable sufficient conditions are derived under
which a steady-state is attained. Without resorting to diminishing step-sizes
which compromise the tracking ability of D-RLS, stability ensures that per
sensor estimates hover inside a ball of finite radius centered at the true
parameter vector, with high-probability, even when inter-sensor communication
links are noisy. Interestingly, computer simulations demonstrate that the
theoretical findings are accurate also in the pragmatic settings whereby
sensors acquire temporally-correlated data.Comment: 30 pages, 4 figures, submitted to IEEE Transactions on Signal
Processin