thesis

Expression of GABAA receptor subunit genes in the avian song system and their role in learning and memory

Abstract

γ-aminobutyric acid type A (GABAA) receptors are the primary mediators of inhibitory neurotransmission in the brain. In avian systems, 14 GABAA receptor subunits (α1-6; β2-β4; γ1, 2 and 4, δ and π) have been identified. These assemble into pentameric transmembrane structures with an intrinsic chloride-selective pore and are involved in the modulation of learning and memory. Following imprinting training in the one-day old chicken, mRNA encoding the GABAA receptor γ4 subunit is significantly reduced in learning-relevant brain regions indicating a role for receptors comprising this subunit in learning and memory. The zebra finch (Taenopygia guttata) song system has long since been used as a paradigm for studying the underlying molecular mechanisms of learning and memory due to the discrete nature of song, the song system and established stages in song development. The avian brain displays many comparable structures and pathways to mammalian systems and there are striking parallels between birdsong and speech production in humans hence the fundamental neuronal mechanisms are similar. Despite major developments towards understanding the anatomical and electrophysiological properties of various song-system nuclei, the nature of the underlying molecular and biochemical/genetic architecture remains largely unknown. Electrophysiological and pharmacological techniques have localised GABAA receptors in the song system and more recently the spatial distribution of γ4-subunit mRNA has been mapped, producing striking results

    Similar works