Abstract

The present work investigates the influence of electrostatic surface potential distribution of monoclonal antibodies (MAbs) on intermolecular interactions and viscosity. Electrostatic models suggest MAb-1 has a less uniform surface charge distribution than MAb-2. The patches of positive and negative potential on MAb-1 are predicted to favor intermolecular attraction, even in the presence of a small net positive charge. Consistent with this expectation, MAb-1 exhibits a negative second virial coefficient (B22), an increase in static structure factor, S(q→0), and a decrease in hydrodynamic interaction parameter, H(q→0), with increase in MAb-1 concentration. Conversely, MAb-2 did not show such heterogeneous charge distribution as MAb-1 and hence favors intermolecular repulsion (positive B22), lower static structure factor, S(q→0), and repulsion induced increase in momentum transfer, H(q→0), to result in lower viscosity of MAb-2. Charge swap mutants of MAb-1, M-5 and M-7, showed a decrease in charge asymmetry and concomitantly a loss in self-associating behavior and lower viscosity than MAb-1. However, replacement of charge residues in the sequence of MAb-2, M-10, did not invoke charge distribution to the same extent as MAb-1 and hence exhibited a similar viscosity and self-association profile as MAb-2

    Similar works